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Abstract—Since the initial comparison of Seitz et al. [48], the accuracy of dense multiview stereovision methods has been increasing

steadily. A number of limitations, however, make most of these methods not suitable to outdoor scenes taken under uncontrolled

imaging conditions. The present work consists of a complete dense multiview stereo pipeline which circumvents these limitations,

being able to handle large-scale scenes without sacrificing accuracy. Highly detailed reconstructions are produced within very

reasonable time thanks to two key stages in our pipeline: a minimum s-t cut optimization over an adaptive domain that robustly and

efficiently filters a quasidense point cloud from outliers and reconstructs an initial surface by integrating visibility constraints, followed

by a mesh-based variational refinement that captures small details, smartly handling photo-consistency, regularization, and adaptive

resolution. The pipeline has been tested over a wide range of scenes: from classic compact objects taken in a laboratory setting, to

outdoor architectural scenes, landscapes, and cultural heritage sites. The accuracy of its reconstructions has also been measured on

the dense multiview benchmark proposed by Strecha et al. [59], showing the results to compare more than favorably with the current

state-of-the-art methods.

Index Terms—Dense multiview stereo, surface reconstruction, large-scale scenes, minimum s-t cut, deformable mesh.

Ç

1 INTRODUCTION

1.1 Motivation

THE classic problem of scene reconstruction from multi-
ple images finds many practical applications in reverse

engineering, in the game and entertainment industry, and
in the digital archives of cultural heritage. However, when
high-accuracy reconstructions are required, the reconstruc-
tion of outdoor scenes has traditionally been done using
range scanning and a combination of surface reconstruction
from point clouds and geometry processing techniques.
These methods and the acquisition process are rather
complex to set for large-scale outdoor reconstructions, and
this often proves to be time consuming, expensive, and
dependent on the scene, particularly when aerial acquisi-
tion is required (see, for instance, the reconstruction of the
Bayon temple in Angkor [2], which used range finders
attached to flying balloons). Providing an image-based
reconstruction solution would certainly eliminate most if
not all of these drawbacks. This problem has thus always
been one of the main goals and an active field of research in
computer vision. Recent advances in multiview stereo
methods have made this goal closer than ever. In this

paper, the focus is on the dense multiview stereo problem,
i.e., the reconstruction of a surface model from a set of
calibrated images where camera calibration is assumed to
be accurately known.

1.2 Previous Work on Dense Multiview Stereo for
Compact Objects

Since the review of [48] and the associated Middlebury
evaluation, a lot of research has been focusing on multi-
view reconstruction of small objects taken under tightly
controlled imaging conditions. This has led to the devel-
opment of many algorithms whose results are beginning to
challenge the precision of laser-based reconstructions.
However, as will be explained, most of these algorithms
are not directly suited to large-scale outdoor scenes. A
number of multiview stereo algorithms have been pro-
posed that exploit the visual hull [41]. Many dense
multiview methods rely on this information either as an
initial guess for further optimization [26], [18], [29], [28],
[55], [61], [64], [69], as a soft constraint [26], [35], or even as
a hard constraint [51], [18] to be fulfilled by the
reconstructed shape.

While the unavailability of the visual hull discards many
of the top-performing multiview stereo algorithms of the
Middlebury challenge [48], the requirement for the ability to
handle large scenes discards most of the others, in
particular volumetric methods, i.e., methods based on a
regular decomposition of the domain into elementary cells,
typically voxels. Obviously, this approach is mainly suited
to compact objects admitting a tight enclosing box, as its
computational and memory costs quickly become prohibi-
tive when the size of the domain increases. This includes
space carving [49], [37], [8], [68], level sets [14], [32],[46], and
volumetric graph cuts [65], [6], [28], [43], [61] (though [50],
[27] propose regular volumetric grid adaptive to photo-
consistency measures to push the resolution limit further).
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Finally, cluttered scenes disqualify variational methods [14],
[26], [12], [32], [44], [46], [11] that can easily get stuck into
local minima, unless a way of estimating a close and reliable
initial guess that takes visibility into account is provided.

1.3 Previous Work on Dense Multiview Stereo for
Outdoor Scenes

Multiview stereo methods that have been proven to be more
adapted to larger scenes, e.g., outdoor architectural scenes,
usually initialize the scenes with sparser measurements
such as depth maps or point clouds to reconstruct a surface.

The performance of some depth maps-based methods
[36], [58], [56], [22], [57], [23], [24] for complete reconstruc-
tion, however, seems to be lower than previously discussed
approaches, as regards either accuracy or completeness of
the obtained model. This may be due to the merging
process and to the difficulty to take visibility into account
globally and consistently. While visibility is taken into
account to fuse depth maps in [45], the focus on high
performance prevents the use of a global optimization. Zach
et al. [70] proposed a globally optimal variational merging
of truncated signed distance maps using a volumetric grid.
Another exception could be the work of [9], currently one of
the most accurate methods according to the Middlebury
evaluation, but this method relies on a volumetric graph cut
[27] that cannot handle large-scale scenes.

Furukawa and Ponce [20] proposed a very accurate
reconstruction that generates and propagates a semidense
set of patches. This method has shown impressive results, but
relies on filtering and expansion heuristics to process a set of
oriented patches. The surface reconstruction step that
converts the set oriented patches into a mesh is done by
applying the well-known Poisson surface reconstruction [33],
which requires dense and uniformly sampled point clouds
and does not handle visibility issues. Finally, the obtained
mesh has to be refined using a mesh evolution. This method
has been tested on the data sets provided by Christoph
Strecha et al. [59], the only available evaluation that allows
comparison on large outdoor scenes (to our knowledge) and
which obtained the best results at the moment of its
publication. More recently, Tylecek and Sara [63] used depth
map fusion, then refined camera center and mesh refinement,
which obtained high accuracy but still lacked completeness.
Salman and Yvinec [47], using our point clouds in [66],
achieved nice completeness of the scenes.

1.3.1 3D Reconstruction on Internet Scale

Recent progress of Structure from Motion (SfM) and
multiview methods allow researchers to handle larger
collections of images of a given site available on the
Internet. The challenge is how to calibrate thousands, even
millions of images and how to reconstruct a 3D scene from
these images within reasonable time. The standard way of
calibration is to use bundler adjustment to estimate SfM of
all these images [53], or its skeletal graph to reduce the
computing cost [54]. Preprocessing to remove redundant
images and fast matching before calibration could be useful
to accelerate the calibration [16]. Implementations are also
taken into account to exploit parallel computing on a cluster
[1] or on a single computer with many CPU and GPU cores
[16]. For 3D reconstruction, Goesele et al. [24] compute

depth maps that form a point clouds and water-tight mesh

using Poisson surface reconstruction. Furukawa et al. [17]

partitioned the cameras in view clusters to run a multiview

stereo of choice for each cluster. Taking into acount the

known vertical of urban scenes, Frahm et al. [16] perform

GPU-accelerated plane sweeping, and then extract the

polygonal mesh. However, there is no qualitative bench-

mark on Internet scale to our knowledge and it may be

difficult to create one.
From the above methods, the 3D reconstruction from an

extremely large collection of images should take care of

scability: removal of redundancy, streaming, division of data,

parallelized computing, and perhaps a combination of partial

results. In this paper, we are not targeting this challenge, and

focus on a global reconstruction of a smaller scale (up to

hundreds of high-resolution images) to result in a highly

complete and accurate watertight mesh for a large outdoor

scene from calibrated images.

1.4 Contributions

Our multiview stereo method consists of a pipeline that

naturally handles large-scale open scenes while providing

very accurate reconstructions within a very reasonable time.

The whole pipeline is designed to not sacrifice accuracy for

scalability. Several design choices are made and justified by

an analysis of the weak points of other methods. The

pipeline contains three main steps:

1. The generation of a quasidense point cloud with
standard passive multiview stereo techniques.

2. The extraction of a mesh that respects visibility
constraints and is close to the final reconstruction,
with a minimum s-t cut-based optimization to fit a
surface over the Delaunay triangulation of the
points.

3. The variational refinement of this initial mesh to
optimize its photo-consistency.

The present paper is an extended version of our recent

conference paper [66], which builds on our previous work

in this field. Compared to our preliminary work [38] on

robust surface reconstruction from semidense point clouds

from multiview stereo matching, the initial point cloud is

generated in a denser and more accurate fashion; the

surface reconstruction has been adapted to use a more

suitable energy similar to [39]. Finally, the variational

refinement uses an energy inspired from our previous

work [46], but in a lightweight and scalable Lagrangian

framework. Our experiments clearly demonstrate the its

competitiveness on large data sets.
The rest of this paper is organized as follows: Section 2

gives some background on the different techniques needed

in our approach: Delaunay triangulations, minimum s-t

cuts for optimal binary labelings, and surface mesh

optimization. In Section 3, the different steps of our

multiview stereo reconstruction pipeline are described in

details. Implementation aspects are discussed in Section 4

and, finally, Section 5 presents experiments on a variety of

real data sets to demonstrate the potential of our pipeline

for reconstructing complex large-scale scenes.
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2 BACKGROUND

In this section, some background and notations are

provided: first, on the Delaunay triangulation upon which

our surface reconstruction is based and, second, on

variational methods applied to mesh deformation.

2.1 Delaunay Triangulation

A triangulation of a point set P in IRd is a partition of its

convex hull into simplices of dimension d. In three

dimensions, it is also called tetrahedralization. A Delaunay

triangulation of a point set P is a triangulation in which no

point in P is inside the circumcircle of any simplex of this

triangulation. In the general position, where there are no

dþ 2 points on the same sphere, the Delaunay triangulation

is unique. Delaunay triangulation is a classical tool in the

field of mesh generation and mesh processing due to its

optimality properties [10].

2.2 Surface Optimization with Minimum s-t Cut

Given a finite directed graph G ¼ ðV; EÞ with nodes V ¼
fv1; . . . ; vng and edges E with nonnegative weights (capa-

cities) wpq, and two special vertices, the source s and the

sink t, an s-t-cut C ¼ ðS; T Þ is a partition of V into two

disjoints sets S and T such that s 2 S and t 2 T .
The cost of the cut is the sum of the capacities of all the

edges going from S to T :

cðS; T Þ ¼
X

vp2Snfsg
vq2T nftg

wpq þ
X

vp2Snfsg
wpt þ

X
vp2T nftg

wsp: ð1Þ

The minimum s-t-cut problem consists of finding a cut C
with the smallest cost: The Ford-Fulkerson theorem [15]

states that this problem is equivalent to computing the

maximum flow from the source s to the sink t and many

classical algorithms exist to efficiently solve this problem.

2.3 Dynamic Meshes: From Continuous to Discrete
Gradient Flow

The last part of our pipeline evolves a triangular mesh to

minimize a photo-consistency energy w.r.t. provided input

images. In what follows, we describe how to compute a

discrete gradient flow from a continous one. The variations

of an energy E attached to a surface S can be analyzed with

a functional gradient defined as the vector field rE such
that for all vector fields v on S we have

DEðSÞ½v� ¼ @EðS þ � vÞ
@�

����
�¼0

¼
Z
S

rEðxÞvðxÞdx: ð2Þ

If the S is a the triangulated mesh, consisting of
n vertices Xi 2 IR3, i 2 ½1; n�, a discrete vector field is
defined at the vertices of this mesh by a sequence of vectors
vi 2 IR3, i 2 ½1; n�. Such a vector field is interpolated
between the vertices over the whole mesh: vðxÞ ¼

P
i vi�i

with
P

i �iðxÞ ¼ 1 for all x 2 S (in the case of triangular
facet, �iðxÞ is the barycentric coordinate corresponding to
vertex i if i is one of vertices of a triangle containing x and 0
otherwise). Equation (2) becomes

DEðSÞ½v� ¼
X
i

vi

Z
S

�iðxÞrEðxÞdx: ð3Þ

This equation naturally shows how to formulate a discrete
gradient from a continous one:

dEðSÞ
dXi

¼
Z
S

�iðxÞrEðxÞdx i 2 ½1; n�: ð4Þ

3 MULTIVIEW RECONSTRUCTION PIPELINE

As shown in Fig. 1 and previously announced, our dense
multiview stereo pipeline is composed of three successive
stages. Given calibrated cameras associated with the input
images, a quasidense set of points is first extracted from the
images. These points are matched pairwise between
different views: From these matches, a quasidense 3D point
cloud is generated by reconstructing and optionally mer-
ging the triangulated 3D points. This point cloud is then fed
to the second stage, which builds a Delaunay triangulation
from it and then robustly extracts an initial surface from the
facets of this triangulation, filtering out most of the outliers.
Finally, the last step improves the quality of the recovered
surface by refining it using a criterion mixing photo-
consistency and fairness.

3.1 Quasidense Point Cloud

In order to apply the surface fitting of the next step of our
reconstruction pipeline, a slightly nonconventional way to
generate point clouds from passive stereo is used that
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Fig. 1. Reconstruction pipeline. 1) Generate a points cloud. 2) Extract a visibility-consistency mesh. 3) Refine the mesh with photo-consistency
optimization and regularization.



favors density over matching robustness. We describe two
different but related point cloud generation strategies, one
matching interest points in the input images and another
using plane sweeping to compute sparse depth maps. We
prefer the latter strategy, which is used in all our recent
experiments because it generates more points.

3.1.1 Match of Interest Points

First, interest points are located in all the input images. For
this purpose, and to capture most of the geometry of the
sampled shape, two complementary kinds of interest points
are considered: Harris corners, which typically lie on
“corners” in images, and Laplacian-of-Gaussian, located at
the center of blob-like structures in images. LoG blobs and
Harris corners are extracted at some fixed scale1 in all the
input images. Then, for each potential camera pair ði; jÞ and
for each interest point mi (of the same type) in the first
image Ii of this pair, its best matching point m?

j is sought
within a small band around the corresponding epipolar line
in the other image Ij. The width of this band is fixed and
should partially depend on the accuracy of the calibration.2

The best matching point m?
j is the point with the highest

matching score against the reference interest point mi. The
neighborhood of a potential match mj in the image Ij is
reprojected in the reference image Ii through a plane
parallel to the focal plane of the camera i and passing
through the potential reconstructed 3D point (the under-
lying assumption is that the surface is locally fronto-parallel
to the camera i). The matching score can then be estimated
in a window around the reference point. Since the choice of
an appropriate matching window size is difficult, multilevel
matching is used, and the matching criterion is the sum of
normalized cross correlations (NCC) for several fixed
window sizes3 (or scale �) as in [67].

Furthermore, this best matching interest point m?
j is kept

only if its matching score is above some threshold and if it is
also successfully validated: The original interest point has to
be the best matching interest point of its best matching
interest point. An initial 3D point can then be reconstructed
from the calibration by using standard triangulation
optimization [25].

The final step aggregates the different 3D points. In each
image, the 2D Delaunay triangulation of the interest points
(of the same type) is computed. This geometric data
structure allows to efficiently locate the nearest interest
points of a given 2D point. Now, a pair of matched interest
points in two different views has given rise to a 3D point
by triangulation. By projecting this initial 3D point in the
other views, potential other unmatched interest points that
are close enough (within a tolerance similar to the half-
width of the epipolar band) are located. Closest unmatched
interest points are merged with the original pair and a new
3D point (replacing the previous one) is reestimated from
all the interest points. The final result is a set of points each
carrying a tuple of views where they were seen. In
addition, a confidence value has been assigned to each
3D point, cumulating the photo-consistency scores of all its

originating pairs. Obviously, as the whole technique relies
on simple greedy or winner-take-all “optimization,” it
possibly generates a noisy point cloud with a decent
amount of outliers.

3.1.2 Sparse Depth Maps

While the previous passive stereo approach is general and
copes with scenes that have enough texture, it tends to
generate lots of outliers and the 3D points are often poorly
located. A different passive stereo technique can be devised
when strong planar structures are observed, as is often the
case in architectural scenes.

Initial sparse depth maps are computed between pairs of
input images. These depth maps have a downscaled
resolution4 w.r.t. the images and are filled using a simple
geometric plane sweep with the same thresholded multi-
level NCC matching score and winner-takes-all optimiza-
tion as above. A plane is swept in the reference camera
frustum and its offset follows a geometric sequence
between the near and far planes of the camera.

These initial depth maps are merged and clusters of
points are formed according to their position in the different
camera frustums. These clusters are hierarchically split until
the bounding boxes of their projections in the images is
small enough. A 3D k-D tree [3] of this clustered initial
point set is then build to efficiently find the k nearest
neighbors of each point using a large neighborhood.5 A
plane is tentatively fitted to each point’s neighborhood with
least squares. Provided the fit is good enough, the point is
retained and its position is iteratively refined using the
same matching score as above. The final result is the same
as what was obtained from interest points: a set of points,
each carrying a tuple of views where they were seen and an
associated confidence. Again, this step still generates a
noisy point cloud with a decent amount of outliers, but
tends to yield better results on architectural scenes (fewer
outliers and noise).

The advantage of the two passive stereo techniques
presented lies in the fact that the reprojection and multilevel
matching process can leverage the computational resources
of common graphics hardware allowing the overall process
to be reasonably fast (a few minutes in the data sets of [59]
featuring from 8 to 30 images of 6 Mpixel, on an Intel Xeon
3.0 GHz CPU with a NVIDIA 260 GTX GPU).

As the reconstruction involves matching points in
different images, the corresponding 3D error distribution
is complex and cannot be modeled as simply as in the range
scanning case. Mismatches are also almost inevitable,
leading to gross outliers. Depending on the geometry of
the cameras and the repetitiveness of texture patterns, these
mismatches may even aggregate in structured clusters of
outliers producing phantom structures in the point cloud.
Another limitation of passive stereo is the highly nonuni-
form density of samples that depends on the amount of
texture on the scene and object. While visibility filtering and
expansion techniques combining heuristic-based optimiza-
tions have been able to improve the quality of point clouds
from stereo, as in [19] and [24], standard point clouds from
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1. In practice, a scale of 2 pixels is used for 6 Mpixel images.
2. A 3 pixel-wide band is typically chosen for 6 Mpixel images.
3. Five levels are used on 6 Mpixel images.

4. By a factor 4� 4 for 6 Mpixel images.
5. k ¼ 25.



multiview such as the two acquisition methods described
have notoriously higher levels of noise and higher ratio of
outliers that point clouds acquired with laser range finding.

However, in our case, relying on thresholds and possibly
generating numerous outliers is not a serious concern. The
only goal of this point cloud from the passive stereo step is
to generate enough points so that the following global
optimization finds a close enough surface from the
tetrahedra facets.

3.2 Visibility-Based Surface Reconstruction

The second step of our multiview pipeline consists of
filtering gross outliers from the point cloud and recon-
structing an initial surface. These two goals are achieved at
once by relying on the Delaunay triangulation described in
Section 2.1 and using a visibility-based formulation to build
a surface and discard outliers.

3.2.1 Optimal Tetrahedron Binary Labeling

From the image-based point cloud P where each point
memorizes the two or more images from which it has been
triangulated v (as described in the previous section), the 3D
Delaunay triangulation of these points is built. Then, the
Delaunay tetrahedra are labeled inside or outside the object
so that this binary labeling minimizes some energy and,
finally, the surface is extracted as the set of triangles
between inside and outside tetrahedra (called a pseudosur-
face in what follows).

3.2.2 Surface Visibility

A pseudosurface S� is sought so as to minimize visibility
constraints imposed by the line of sight of the acquired
points: S� ¼ arg minSEvisðS;P; vÞ.

A surface should never cross the empty space traversed
by the various lines of sight attached to the points. Ideally,
one would like to minimize the conflicts of the lines of sight
with the surface S induced by the tetrahedron labeling l.
This corresponds to the following term:

X
P2P

X
Q2vP

V conflict lTQ!P
1

; . . . ; lTQ!P
N½QP �

� �
;

where TQ!P1 ; . . . ; TQ!PN½QP �
is the ordered sequence of the N ¼

N½QP � tetrahedra crossed from the camera center position Q

to the point P (see Fig. 2). Since P is a vertex of the

Delaunay triangulation, the sequence is terminated before

the tetrahedron lying behind P as shown in the upper part

of Fig. 2. Each oriented facet F ¼ ðTQ!Pi \ TQ!Piþ1 Þ for i 2
½1; N � 1� is intersected by the line segment ½QP �. To cast as

a minimum s-t cut problem, we penalize the number of

misalignments of the tetrahedra’s label and define V conflict as

(we drop the notation Q! P )

V conflict lT1
; . . . ; lTNð Þ ¼

XN�1

i¼1

Valign lTi ; lTiþ1

� �
;

where V align is a simple pairwise subterm defined for two
adjacent cells of the complex (since in the above equation
the cells are crossed in that order, they are adjacent to each
other) ValignðlTi ; lTjÞ ¼ �vis 11½ lTi ¼ 0 ^ lTj ¼ 1� with �vis is a
constant w.r.t. the labeling but depends on the point or line

of sight considered: It is a confidence measure of the point
or line of sight. �vis can be linked to the photo-consistency
score of the triangulated 3D point.

Since the trivial labeling l0 : t 2 T ! 0 marking all

tetrahedra as outside and to which an empty pseudosurface

corresponds, satisfying these constraints, the facts that the

point is assumed to lie near the surface and the camera

centers have to be outside have to be considered. TQ!P1 is

the tetrahedron containing the camera and it should be

marked as outside. We denote by TQ!PNþ1 the tetrahedron

behind the point P in the direction of the line of sight and

this tetrahedron should be favored as inside. Therefore, we

add two more terms: DoutðlT Þ ¼ �vis11½lT ¼ 1� and DinðlT Þ ¼
�vis11½lT ¼ 0�.

To this end, Evis is the following expression:

EvisðS;P; vÞ ¼
X
P2P

X
Q2vP

Dout lTQ!P
1

� �
ð5Þ

þ
XN½QP ��1

i¼1

Valign lTQ!Pi
; lTQ!P

iþ1

� �
ð6Þ

þDin lTQ!P
N½QP �þ1

� �
: ð7Þ

The corresponding weight construction is shown in Fig. 2:
The s-link of the vertex representing the tetrahedron T1 is
assigned �vis, the t-link of vertex representing the tetrahe-
dron TNþ1 (N ¼ 4 in Fig. 2) behind the point P is assigned
�vis, and each oriented facet crossed by the line of sight from
P to Q is also assigned �vis. These weight assignments are
accumulated over all lines of sight, and computing a
minimum s-t on this graph yields a globally optimal labeling.

One might wonder if alternatives would not be better
suited to this problem, e.g., using the Dout subterm for all
crossed tetrahedra, which leads to a guided ballooning
force [42], [27]. Without an appropriate regularization term,
that energy tends to minimize the number of “inside”
tetrahedra in a light of sight no matter whether these
tetrahedra are adjacent or not. It might lead to a fragmented
surface. On the other hand, our visibity term minimizes the
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Fig. 2. Visibility and graph construction. A line of sight from a

reconstructed 3D point traverses a sequence of tetrahedra, the graph

construction, and the assignment of weights to the tetrahedra and

oriented facets.



number of time the surface cut the light-of-sights, which
favors a more regularized surface.

3.2.3 Surface Quality

As input images are available, an additional photo-consis-

tency term Ephoto may be used to favor surfaces with the best

matching reprojections in the different views. This can also be

implemented within the minimum s-t cut framework [38].

However, the resulting point cloud typically might contain

millions of points (see Fig. 9); the photo-consistency term is

quite expensive. Moreover, the visibility term of our energy

is very effective to filter out outliers from stereo point

clouds. Since the output surface is only used as an

initialization for a variational photometric refinement, the

photo-consistency term is advantageously replaced with the

simple surface quality term Equal of [40] for surface

reconstruction from range scans: EqualðSÞ ¼
P

f wf11½lTf
1
6¼

lT f
1
�. This sum is over every facet f in the triangulation, Tf1

and Tf2 the two tetrahedra incident to f , wf ¼ 1 �
minfcosð�Þ; cosð Þg, where �,  are the angles of the facet

f with the circumspheres of Tf1 , Tf2 , respectively, (Fig. 3).
This term penalizes facets unlikely to appear on a

densely sampled surface by using a geometric criterion
related to the size of the empty circumspheres of a triangle.
Support for infinite tetrahedra is also added (tetrahedra
with one facet on the convex hull and incident to the infinite
vertex). This not only allows the observer to be “inside” the
object, but also makes it possible to generate open meshes.
This is an important aspect of outdoor scenes.

The energy to label tetrahedra, which can be globally
minimized with minimum s-t cut, is thus

EðSÞ ¼ EvisðS;P; vÞ þ �qual EqualðSÞ; ð8Þ

where P is the generated point cloud and v the associated
visibility sets of the points.

3.3 Photometric Robust Variational Refinement

As the initial surface reconstruction method is interpolatory
and the point cloud still contains a decent amount of noise,
the obtained initial mesh, noted as M0, is noisy and fails to
capture fine details. By using all the image data, this mesh
is refined with a variational multiview stereovision
approach pioneered by Faugeras and Keriven [14]: M0 is
used as the initial condition of a gradient descent of an
adequate energy function. As the mesh M0 is already close

to the desired solution, this local optimization is very
unlikely to get trapped in an irrelevant local minimum. The
details of the energy function and the optimization
procedure are now presented and the improvements over
the initial method justified. This collection of improvements
should not be considered as mere implementation details
and all have a strong impact on the accuracy of the final
reconstruction.

The inital mesh M0, as the surface between interior and
exterior tetrahedra, may still contain isolated triangles
respecting visibility constraint (for example, from false
points in the sky, background of scene) or big-size
triangles (due to lack of density of points or lack of
images in some area). Moreover, it might capture the
landscape far from our scene, which we do not need to
reconstruct in detail (plus it is impossible to refine this part
accurately because of inexact calibration for scenes very far
from cameras). For these reasons, we remove these
triangles by some thresold of triangle size or number of
triangles in an isolated piece, and manually cut unneces-
sary far landscape background.

3.3.1 Photo-Consistency Refinement

Let S be the object surface x a point on S, ~n the normal to S
at point x, gijðIi; IjÞðx;~nÞ a positive decreasing function of a
photo-consistency measure of the patch P ¼ ðx;~nÞ accord-
ing to images Ii and Ij, and vSijðxÞ 2 f0; 1g the visibility of x
in these images according to S. The original energy in [14] is

EphotoðSÞ ¼
X
i;j

Z
S

vSijðxÞ gijðx;~nÞ dS: ð9Þ

Instead of this energy, the reprojection error introduced by
[46] is preferred, namely,

EerrorðSÞ ¼
X
i;j

Z
�S
ij

hðIi; ISijÞðxiÞ dxi; ð10Þ

where hðI; JÞðxÞ is a decreasing function of a photo-
consistency measure between images I and J at pixel x
(typically the opposite of normalized cross correlation),
ISij ¼ Ij ��j ���1

i is the reprojection of image Ij into
image Ii induced by S, and �S

ij is the domain of definition
of this reprojection (see Fig. 4), �i and ��1

i are the
projection and back projection from an image i to the
surface. This energy measures, for each considered camera
pair, the dissimilarity between the portion of a reference
image corresponding to the projected surface and a
portion of another image reprojected via the surface into
the reference image.
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Fig. 3. Surface quality. A facet of the triangulation, its two adjacent
tetrahedra (red), and their circumspheres (green). Their angles � and  
with the facet influence the weight this facet will get.

Fig. 4. Reprojection induced by the surface.



This summation has several major advantages over the
original one:

1. Reprojecting Ij into Ii according to S uses the exact
geometry of S and does not rely on any approxima-
tion of the tangent patch ðx;~nÞ.

2. The less a surface element is viewed in a given
image, the less it contributes to the energy.

3. This reprojection can easily and efficiently be
computed on graphics hardware with projective
texture mapping.

The first point is essential to get an accurate reconstruction:
In methods approximating the surface by planar patches,
the choice of patch size is a difficult tradeoff between robust
and accurate photo-consistency. In practice, we set the
photo-consistency measure as the opposite of normalized
cross correlation. This measure has the advantage of
robustness to noise and light change, which occurs
frequently for outdoor images, due to real lighting change
and internal image processing inside cameras.

3.3.2 Regularization

The original intrinsic energy Ephoto of (9) is self-regularizing
due to the area-weighted integration over the surface. This
is, however, not the case of (10). The energy function Eerror is
thus complemented with a surface fairing term Efair, thin-
plate energy that measures the total curvature of the
surface. This term penalizes strong bending, not large
surface area:

EfairðSÞ ¼
Z
S

ð�2
1 þ �2

2Þ dS; ð11Þ

where �1 and �2 are the principal curvatures of the surface
at the considered point. Consequently, the associated
gradient flow is exempt from the classical shrinking bias.

3.4 Discretization

Many methods in variational multiview stereovision [12],
[14], [32], [44], [46], and, more generally, in computer vision,
rely on an optimize then discretize approach: An energy
functional depending on a continuous infinite-dimensional
representation is considered, the gradient of this energy
functional is computed analytically, then the obtained
minimization flow is discretized.

In contrast, a discretize then optimize approach is adopted:
An energy function that depends on a discrete finite-
dimensional surface representation, here a triangle mesh is
considered, and standard nonconvex optimization tools are
used. The benefits of this approach have long been
recognized in mesh processing, but have seldom been
demonstrated in computer vision [11], [26], [52].

As (4) shows, the obtained gradient vector at a vertex
involves integrals over the ring of triangular facets around it
(see also [13, Sec. 2.2]). This is in strong contrast with a point
wise, and thereby noise sensitive, dependency on the input
data that a late discretization typically causes. A crucial
point has to be noted here: This discrete gradient flow may
include a significant tangential component driving the
vertices at the right places minimizing the energy. For
instance, vertices naturally migrate to the object edges if
any. This is illustrated by the crisp reconstruction of stair
treads in Fig. 7.

In what follows, we recall some definitions and results of

[46] that are the base of our discretization.
Given two images: I; J : �! IRd, let us consider

MðI; JÞ ¼
R

� hðI; JÞðxÞdx as a function of similarity of two

images. @2MðI; JÞ is defined as the derivative of MðI; JÞ
with respect to the second image, in the sense that, for any

image variation �J ,

lim
�!0

MðI; J þ ��JÞ
�

¼
Z

�

@2MðI; JÞðxÞ�JðxÞdx: ð12Þ

We noteMijðSÞ ¼MðIi; ISijÞ, thus EerrorðSÞ ¼
P

i;jMijðSÞ
and rEerrorðSÞ ¼

P
i;jrMijðSÞ.

With a point x 2 S visible for cameras i and j, we note:

xi ¼ �iðxÞ, xj ¼ �jðxÞ the projection in image i, j, di the

vector joining the center of camera i, and x, zi the depth of x

in camera i, N the outward surface normal at x (see Fig. 5).

From [46, p. 10], we have

dxi ¼ �NTdidx=z
3
i ; ð13Þ

rMijðxÞ ¼ � @2MðxiÞDIjðxjÞD�jðxÞ
di

z3
i

	 

N; ð14Þ

with M the abbreviation for MðIi; ISijÞ, D denotes the

Jacobian matrix of a function. The term between square

brackets line is a scalar quantity. We note fijðxiÞ ¼
@2MðxiÞDIjðxjÞD�jðxÞdi, then rMijðxÞ ¼ �fijðxiÞ N=z3

i .
We rewrite (4) in dropping the index i of Xi and �i:

dEerrorðSÞ
dX

¼
Z
S

�ðxÞ
X
i;j

rMijðxÞdx ð15Þ

¼ �
Z
S

�ðxÞ
X
i;j

fijðxiÞN=z3
idx ð16Þ

¼ �
X
i;j

Z
S

�ðxÞfijðxiÞN=z3
idx; ð17Þ

¼
X
i;j

Z
�ij

�ðxÞfijðxiÞN=z3
i

z3
i

NTdi
Ndxi ð18Þ
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Fig. 5. Some notations in reprojection.



¼
X
i;j

Z
�ij

�ðxÞfijðxiÞ=ðNTdiÞNdxi; ð19Þ

where �ij is the map of the reprojection from image j to

image i via the surface. Therefore, the gradient of each

vertex equals the summation weighted (with barycentric

coordinate) of contribution of all pixels lying in the

projection of all the triangles containing this vertex for all

pairs of images ði; jÞ.
When the mesh parameterization is close to isometric,

the gradient from the complementary thin-plate energy

reduces to a simple bi-Laplacian �2. A discrete analog of

such simplified thin-plate energy and associated flow,

described in [34], is used by applying the umbrella operator

of [60] to approximate the Laplace-Beltrami operator. This

particular choice has a convenient property of redistribut-

ing vertices along the surface, and in particular discourages

degenerate triangles.

3.4.1 Balance between Photo-Consistency and

Regularization

A long-standing issue in variational methods is the proper

and automatic balancing between data attachment and

smoothing terms. Designing a general solution to this
problem is clearly beyond the scope of this paper. A specific

strategy is instead proposed that allows to conduct all the

following experiments without adjusting parameters to each

data set. The solution is twofold.

First, the fact that regularization has to be more

important where photo-consistency is less reliable is

observed, in particular in textureless or low-textured image

regions. Consequently, the contribution of camera pair ði; jÞ
at pixel xxi in (19) is weighted by a reliability factor rðxiÞ ¼
minð�2

i ; �
2
j Þ=ðminð�2

i ; �
2
j Þ þ �2Þ, where �2

i and �2
j denote the

local variance at xxi in images Ii and ISij, respectively, and � is

a constant.
Second, the two terms of the energy function are

homogenized: While the data attachment term of (10) is

homogeneous in an area in pixels, the discrete thin-plate
term is homogeneous in squared world units. After weight-

ing the contribution of each image in (10) by the square of the

ratio between the average depth of the scene and the focal

length in pixels, a scalar regularity weight can be defined

whose optimal value is stable across very different data sets.

As we previously mentioned, this thin-plate term not only

plays an a priori knowledge of the model (Bayesian

arguments), but stabilizes the mesh during the refinement

by redistributing vertices along the surface.

3.4.2 Mesh Resolution

The resolution of the mesh is automatically and adaptively

adjusted to image resolution: A triangular facet is sub-

divided if there is one camera pair such that the visible facet

projection exceeds a user-defined number of pixels in both

images. This threshold is set to 16 pixels in the experiments.

A classical one-to-four triangle subdivision scheme is used,

which has the advantage of preserving sharp edges.

Nevertheless, we believe that other subdivision methods

can be used.

4 IMPLEMENTATION ASPECTS

Parts of our reconstruction pipeline take advantage of the
cheap parallel processing resources available in many
consumer-grade graphics card: namely, the computation
of the initial quasidense point cloud, the computation of
the mesh velocity field (the normalized cross-correlation
and the image reprojections), and also its evolution, which
are mostly done with a custom combination of vertex,
geometry, and fragment shaders. The independence of
pixels of images in our computation helps our pipeline
adapt very well to the graphics card. Our approach
heavily relies on geometric data structures and queries:
from the 2D and 3D Delaunay triangulations and its
corresponding queries to dynamic meshes. Fortunately the
computational geometry algorithms library (CGAL)6 [4]
defines robust and efficient implementations of all the
geometric data structures, primitives, queries, and traver-
sals needed for our different algorithms. Finally, the max-
flow algorithm described in [5]7 is used to compute a
minimum s-t-cut of our specifically designed network
graphs.

With these implementation advantages, the overall
running time is quite reasonable; for example, it takes
45 minutes for the whole pipeline in the data set Herz-Jesu-
P25 provided by Strecha et al. [59], consisting of 25 images
of resolution 3;072� 2;048, most of the time being spent
either in computing and selecting points when generating
the initial point cloud or in the final photometric refinement.

5 EXPERIMENTAL RESULTS

5.1 Compact Objects

As mentioned in the introduction, our reconstruction
pipeline does not target small-scale data sets for which
the acquisition conditions can typically be easily modified
to allow a foreground/background segmentation. Never-
theless, Fig. 6 shows the results of our final variational
refinement step (from a mesh approximating the visual
hull) and evaluation on the Middlebury dense multiview
stereo benchmark of [48]. For the sake of comparison, we
have included the results of other methods, including the
results of our previous level set-based method [46] and
another mesh-based variational approach based on the
same energy function as our previous work [71]. Our results
on the templeRing are currently the best both in complete-
ness and accuracy. However, on the dinoRing, while a
highly complete reconstruction is indeed achieved, our
results are less competitive in terms of accuracy. This may
be explained in the strong lack of texture on this particular
data set that makes our photo-consistency measurement
less peaked near the ground-truth surface.

5.2 Outdoor Architectural Scenes

Provided by Strecha et al. [59], the already mentioned data
sets consists of outdoor scenes acquired with 8 to
30 calibrated 6 Mpixel images. Ground truth has been
acquired with a LIDAR system. The evaluation of the
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6. http://www.cgal.org/.
7. And implemented in http://www.adastral.ucl.ac.uk/~vladkolm/

software.html.



multiview stereo reconstructions is quantified through
relative error histograms counting the percentage of the
scene recovered within a range of 1 to 10 times the
estimated LIDAR depth standard deviation �. Dedicated
to large-scale objects and fitting our objective perfectly,
these sets are particularly challenging, especially the castle-
P19, a complete courtyard acquired from the inside and
where a tractor is placed in the middle, disturbing
reconstruction. So far, [19], [31], [47], [62], [63] submitted
for all these particular data sets. Some of them appeared
after our conference version of this paper [66], yet our
results still achieve the best at accuracy and completeness in
most data sets of this benchmark. Comparisons with the
other methods are given in Fig. 8, where cumulated
histograms clearly show that the proposed pipeline is both
more accurate (thanks to the final variational refinement)
and complete (thanks to the initial visibility-consistent
mesh). More detailed views of our reconstruction of the
Herz-Jesu-P25 data set are shown in Fig. 7. Note how details,
topology (e.g., columns), and edges (e.g., stairs) are
precisely recovered, while regularization still handles as
correctly as possible blurred or untextured parts. Further
results are available on the challenge website.8

5.3 Landscape and Cultural Heritage Scenes

The method was tested on an aerial acquisition of the

Aiguille du Midi summit (data and calibration courtesy

Bernard Vallet and Marc Pierrot-Deseilligny, respectively).

The data set consists of 53 images of 5 Mpixel. Fig. 9 shows

two of the images, the generated point cloud, the initial

mesh M0, and the final reconstruction. This experiment

validates the whole pipeline and the ability to cope with

uncontrolled imaging conditions (snow, sun, moving

people from one image to another) and a mix of complex

and smooth geometries. The variational process is able to

recover the top antenna, although it is only partially present

in M0. Fig. 1 shows results on a data set of 27 images of

10 Mpixel of a sculpted calvary taken from the ground. The

cloud has 802K points, with many outliers, mainly sky

points obtained by matching clouds that have moved

between shots; 539K of these points are selected for the

initial mesh. This mesh is noisy due to the process of

matching interest points that are just approximately view-

point invariant. The closer views in Fig. 10 show the final

reconstruction (2,331K triangles) is very sharp, to capture

meaningful details. Fig. 11 shows results on a data set of

30 images of 14 Mpixel of Cluny Abbey in France, taken

from a balloon in front. Lacking different views, the total

scene is not complete, but the final reconstruction proves its

great details from the direction of input images. We also

tested on an aerial acquisiton of Entrevaux (Fig. 12),

consisting of 109 images of 3.1 Mpixel. The final mesh is

very complete, capturing small details of buildings and

cliffs with trees. Note that trees are not suitable for

multiview or mesh representation because of their complex

and changing shape in time. Nevertheless, our method is

robust enough to give them a reasonable form.

6 CONCLUSION AND FUTURE WORK

A novel dense multiview stereo reconstruction pipeline has
been presented. The whole method is designed to handle
the reconstruction of large-scale cluttered scenes taken
under uncontrolled imaging conditions, a scenario where
traditional multiview stereo methods are either not applic-
able or have completeness and accuracy issues in part due
to a lack of a correct treatment of visibility issues. The initial
surface reconstruction problem is cast as the recovery of a
visibility-consistent surface from the Delaunay triangula-
tion of a quasidense point generated from the input images.
This problem is reduced to a binary labeling of tetrahedron
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8. http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html.

Fig. 7. Top: Overview of our reconstruction of Herz-Jesu-P25. Bottom:
Close-ups on reconstruction details such as the thin metal bars, the
facade relief or the staircases.

Fig. 6. Comparison to ground truth (top images: left column is ground
truth, right column is our result) and evaluation results (bottom tables) on
the dinoRing and templeRing data sets of [48].



that can be efficiently computed with a minimum s-t cut:

The obtained surface is both complete and close to the

ground truth and serves as a coarse initial estimate of

the scene or object of interest. Its accuracy is then improved

by a carefully designed and also scalable variational

refinement. The full multiview stereo pipeline has been

demonstrated on a number of large-scale scenes. Its output

reconstructions are visually and quantitatively more accu-

rate and complete than state-of-the-art techniques. Regard-

ing future work, we will adapt the whole pipeline with

parallel computing to reduce running time and to cope with

larger data sets.
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Fig. 8. Relative error cumulated histograms. From left to right, up to down, the relative error cumulated histograms, respectively, for the fountain-P11
(two first histograms), Herz-Jesu-P8, entry-P10, castle-P19, Herz-Jesu-P25 data set. The legend is the following: FUR for [19], ST4 for [56], ST6 for
[57], ZAH for [71], TYL for [62], TYL09 for [63], JAN for [30], JAN09 for [31], SAL for [47], and VU for our work. On all data sets, the measurements
clearly confirm our better results, both in accuracy and completeness.

Fig. 9. Results on an Aiguille-du-Midi data set. From left to right: Two sample images taken from a helicopter (� B.Vallet/IMAGINE), point cloud from
interest points, initial surface, and our final reconstruction.

Fig. 10. Refined mesh on ground-level scene calvary.
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Fig. 11. Results on Cluny data set. Cluny Abbey built from 30 images taken from a balloon (� B.Vallet/IMAGINE) and an image of data set.

Fig. 12. Results on Entrevaux data set. Nontexture mesh from 109 images taken from a helicopter (� IMAGINE/CSTB), seen in two views
associated with similar images.
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